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Abstract 
 
It has been twenty years since DeWit (1982) first applied fuzzy logic (FL) to insurance.  That 
article sought to quantify the fuzziness in underwriting.  Since then, the universe of discourse 
has expanded considerably and now also includes FL applications involving classification, 
projected liabilities, future and present values, pricing, asset allocations and cash flows, and 
investments.  This article presents an overview of these studies.  The two specific purposes of 
the article are to document the FL technologies have been employed in insurance-related 
areas and to review the FL applications so as to document the unique characteristics of 
insurance as an application area. 
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Insurance Applications of Fuzzy Logic 
 
1 Introduction 
 
The first article to use fuzzy logic (FL) in insurance was DeWit (1982),1 which sought to 
quantify the fuzziness in underwriting.  Since then, the universe of discourse has expanded 
considerably and now includes FL applications involving classification, underwriting, 
projected liabilities, future and present values, pricing, asset allocations and cash flows, and 
investments. 
 
This article presents an overview of these FL applications in insurance.  The specific 
purposes of the article are twofold:  first, to document the FL technologies have been 
employed in insurance-related areas; and, second, to review the FL applications so as to 
document the unique characteristics of insurance as an application area. 
 
Before continuing, the term FL needs to be clarified.  In this article, we generally follow the 
lead of Zadeh, the founder of FL, and use the term FL in its wide sense.  According to Zadeh 
(2000), 
 

Fuzzy logic (FL), in its wide sense, has four principal facets.  First, the logical facet, 
FL/L, [fuzzy logic in its narrow sense], is a logical system which underlies approximate 
reasoning and inference from imprecisely defined premises.  Second, the set-theoretic 
facet, FL/S, is focused on the theory of sets which have unsharp boundaries, rather than 
on issues which relate to logical inference, [examples of which are fuzzy sets and fuzzy 
mathematics].  Third is the relational facet, FL/R, which is concerned in the main with 
representation and analysis of imprecise dependencies.  Of central importance in FL/R are 
the concepts of a linguistic variable and the calculus of fuzzy if-then rules. Most of the 
applications of fuzzy logic in control and systems analysis relate to this facet of fuzzy 
logic.  Fourth is the epistemic facet of fuzzy logic, FL/E, which is focused on knowledge, 
meaning and imprecise information.  Possibility theory is a part of this facet.  

 
The methodologies of the studies reviewed in this article are based on all of these facets, in 
that they involve fuzzy set theory (FST), fuzzy numbers, fuzzy arithmetic, fuzzy inference 
systems, fuzzy clustering, and possibility distributions.  The term "fuzzy systems" also is 
used to denote these concepts, as indicated by some of the titles in the reference section of 
this paper, and will be used interchangeably with the term FL. 
 
This article is subdivided by fuzzy technique.2  The topics covered include linguistic 
variables and fuzzy set theory, fuzzy numbers and fuzzy arithmetic, fuzzy inference systems, 
fuzzy c-means algorithm, fuzzy linear programming, and soft computing.  Each section 

                                                 
1 While DeWit was the first to write an article that gave an explicit example of the use of FL in insurance, FL, as 
it related to insurance, was a topic of discussion at the time.  Joseph (1982), for example, remarked that "... not 
all expert knowledge is a set of "black and white" logic facts - much expert knowledge is codifiable only as 
alternatives, possibles, guesses and opinions (i.e., as fuzzy heuristics)." 
2 This article could have been structured by fuzzy technique, as was done by Yakoubov and Haberman (1998) or 
by actuarial topic, as was done by Derrig and Ostaszewski (1999).  Given the focus of this conference, the 
former structure was adopted. 
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begins with a description of the technique3 and is followed by a chronological review of the 
insurance applications of that technique.  However, when an application involves more than 
one technique, it is only discussed in one section.  The article ends with a comment on the 
future of FL in insurance.  
 
2 Linguistic Variables and Fuzzy Set Theory 
 
Linguistic variables are the building blocks of FL.  They may be defined (Zadeh, 1975, 1981) 
as variables whose values are expressed as words or sentences.  Risk capacity, for example, 
may be viewed both as a numerical value ranging over the interval [0,100%], and a linguistic 
variable that can take on values like high, not very high, and so on.  Each of these linguistic 
values may be interpreted as a label of a fuzzy subset of the universe of discourse X = 
[0,100%], whose base variable, x, is the generic numerical value risk capacity.  Such a set, an 
example of which is shown in Figure 1, is characterized by a membership function (MF), 
µhigh(x) here, which assigns to each object a grade of membership ranging between zero and 
one.  
 

Figure 1:  (Fuzzy) Set of Clients with High Risk Capacity 
 
In this case, which represents the set of clients with a high risk capacity, individuals with a 
risk capacity of 50 percent, or less, are assigned a membership grade of zero and those with a 
risk capacity of 80 percent, or more, are assigned a grade of one.  Between those risk 
capacities, (50%, 80%), the grade of membership is fuzzy.  
 
If the MF has the shape depicted in Figure 1, it is characterized as S-shaped.  Figure 2 shows 
examples of four other commonly used classes of MFs:  triangular, trapezoidal, Gaussian, and 
generalized bell. 
 

                                                 
3 Only a cursory review of the FL methodologies is discussed in this paper.  Readers who prefer a more 
extensive introduction to the topic, with an insurance perspective, are referred to Ostaszewski (1993).  Those 
who are interested in a comprehensive introduction to the topic are referred to Zimmermann (1996) and DuBois 
and Prade (1997).  Readers interested in a grand tour of the first 30 years of fuzzy logic are urged to read the 
collection of Zadeh’s papers contained in Yager et. al. (1987) and Klir and Yuan (1996). 
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Figure 2:  Examples of Classes of MFs 
 
A useful concept insofar as MFs is the α-cut, an example of which is depicted in Figure 34 

Figure 3:  Alpha Cut 
 
 
As indicated, the essence of the α-cut is that it limits the domain under consideration to the 
set of elements with degree of membership of at least alpha.  Thus, while the support of fuzzy 
set A is its entire base, its α-cut is from  to .  Values outside that interval will be 
considered to have a level of membership that is too insignificant to be relevant and should be 
excluded from consideration, that is, cut out.  

)(α
leftx )(α

rightx

 
Fuzzy sets are implemented by extending many of the basic identities that hold for ordinary 
sets.  Thus, for example, the union of fuzzy sets A and B often is defined as the smallest 
fuzzy set containing both A and B, and the intersection of A and B often is defined as the 
largest fuzzy set which is contained in both A and B. 
 
2.1 Applications  
 
This subsection presents an overview of some insurance applications of linguistic variables 
and fuzzy set theory.  The topics addressed include: earthquake insurance, optimal excess of 
loss retention in a reinsurance program, the selection of a "good" forecast, where goodness is 
defined using multiple criteria that may be vague or fuzzy, resolve statistical problems 
involving sparse, high dimensional data with categorical responses, the definition and 
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4 Adapted from Sinha and Gupta (2000), Figure 7.13. 



measurement of risk from the perspective of a risk manager, and deriving an overall disability 
Index. 
 
An early study was by Boissonnade (1984), who used pattern recognition and FL in the 
evaluation of seismic intensity and damage forecasting, and for the development of models to 
estimate earthquake insurance premium rates and insurance strategies.  The influences on the 
performance of structures include quantifiable factors, which can be captured by probability 
models, and nonquantifiable factors, such as construction quality and architectural details, 
which are best formulated using fuzzy set models.  For example, he defined the percentage of 
a building damaged by an earthquake by fuzzy terms such as medium, severe and total, and 
represented the membership functions of these terms as shown in Figure 4.5 

Figure 4:  MFs of Building Damage 
 
Two methods of identifying earthquake intensity were presented and compared.   The first 
method was based on the theory of pattern recognition where a discriminative function was 
developed using Bayes' criterion and the second method applied FL. 
 
Lemaire (1990) envisioned the decision-making procedure in the selection of an optimal 
excess of loss retention in a reinsurance program as essentially a maximin technique, similar 
to the selection of an optimum strategy in noncooperative game theory.  As an example, he 
considered four decision variables (two goals and two constraints) and their membership 
functions: probability of ruin, coefficient of variation, reinsurance premium as a percentage 
of cedent's premium income (Rel. Reins. Prem.) and deductible (retention) as a percentage of 
cedent's premium income (Rel. Deductible).  The grades of membership for the decision 
variables (where the vertical lines cut the MFs) and their degree of applicability (DOA), or 
rule strength, may be represented as shown Figure 5.6 
 

Figure 5:  Optimal Retention Given Fuzzy Goals and Constraints 
 
In the choice represented in the figure, the relative reinsurance premium has the minimum 
membership value and defines the degree of applicability for this particular excess of loss 
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5 Adapted from Boissonnade (1984), Figure 6.3. 
6 Adapted from Lemaire (1990), Figure 2. 



reinsurance program.  The optimal program is the one with the highest degree of 
applicability. 
 
Cummins and Derrig (1993 p. 434) studied fuzzy trends in property-liability insurance claim 
costs as a follow-up to their assertion that “the actuarial approach to forecasting is 
rudimentary.”   The essence of the study was that they emphasized the selection of a "good" 
forecast, where goodness was defined using multiple criteria that may be vague or fuzzy, 
rather than a forecasting model.  They began by calculating several possible trends using 
accepted statistical procedures7 and for each trend they determined the degree to which the 
estimate was good by intersecting the fuzzy goals of historical accuracy, unbiasedness and 
reasonableness.   
 
The flavor of the article can be obtained by comparing the graphs in Figure 6, which show the 
fuzzy membership values for 30 forecasts8 according to historical accuracy (goal 1), ordered 
from best to worst, and unbiasedness (goal 2), before intersection, graph (a) and after 
intersection, graph (b). 

 
Figure 6:  The Intersection of Historical Accuracy and Unbiasedness 

 
They suggested that one may choose the trend that has the highest degree of goodness and 
proposed that a trend that accounts for all the trends can be calculated by forming a weighted 
average using the membership degrees as weights.  They concluded that FL provides an 
effective method for combining statistical and judgmental criteria in insurance decision-
making. 
 
Another interesting aspect of the Cummins and Derrig (1993) study was their α-cut for trend 
factors, which they conceptualized in terms of a multiple of the standard deviation of the 
trend factors beyond their grand mean.  In their analysis, an α-cut corresponded to only 
including those trend factors within 2(1-α) standard deviations. 
                                                 
7 Each forecast method was characterized by an estimation period, an estimation technique, and a frequency 
model.  These were combined with severity estimates to obtain pure premium trend factors. [Cummins and 
Derrig (1993: Table 1)] 
8 Adapted from Cummins and Derrig (1993), Figures 2 and 3, which compared the membership values for 72 
forecasts. 
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A novel classification issue was addressed by Manton et. al. (1994), who used FST to resolve 
statistical problems involving sparse, high dimensional data with categorical responses.  They 
began with a concept of extreme profile, which, for the health of the elderly, two examples 
might be "active, age 50" and "frail, age 100."  From there, their focus was on gik, a grade of 
membership (GoM) score that represents the degree to which the i-th individual belongs to 
the k-th extreme profile in a fuzzy partition, and they presented statistical procedures that 
directly reflect fuzzy set principles in the estimation of the parameters.  In addition to 
describing how the parameters estimated from the model may be used to make various types 
of health forecasts, they discussed how GoM may be used to combine data from multiple 
sources and they analyzed multiple versions of fuzzy set models under a wide range of 
empirical conditions. 
 
Jablonowski (1996) investigated the use of FST to represent uncertainty in both the definition 
and measurement of risk, from the perspective of a risk manager.  His conceptualization of 
exposure analysis is captured in Figure 7,9 which is composed of a fuzzy representation of (a) 
the  perceived risk, as a contoured function of frequency and severity, (b) the probability of 
loss, and (c) the risk profile. 

Figure 7:  Fuzzy Risk Profile Development 
 
The grades of membership vary from 0 (white) to 1 (black); in the case of the probability 
distribution, the black squares represent point estimates of the probabilities.  The risk profile 
is the intersection of the first two, using only the min operator.  He concluded that FST 
provides a realistic approach to the formal analysis of risk. 
 
Jablonowski (1997) examined the problems for risk managers associated with knowledge 
imperfections, under which model parameters and measurements can only be specified as a 
range of possibilities, and described how FL can be used to deal with such situations.  
However, unlike Jablonowski (1996), not much detail was provided. 
 
The last example of this section is from the life and health area.  Chen and He (1997) 
presented a methodology for deriving an Overall Disability Index (ODI) for measuring an 
individual's disability.  Their approach involved the transformation of the ODI derivation 
problem into a multiple-criteria decision-making problem.  Essentially, they used the analytic 
hierarchy process, a multicriteria decision making technique that uses pairwise comparisons 
to estimate the relative importance of each risk factors (Saaty 1980), along with entropy 
theory and FST, to elicit the weights among the attributes and to aggregate the multiple 
attributes into a single ODI measurement. 
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9 Adapted from Jablonowski (1996), Figures 7, 8 and 9. 



3 Fuzzy Numbers and Fuzzy Arithmetic 
 
Fuzzy numbers are numbers that have fuzzy properties, examples of which are the notions of 
“around six percent” and “relatively high”.  The general characteristic of a fuzzy number 
(Zadeh, 1975 and Dubois and Prade, 1980) often is represented as shown in Figure 8, 
although any of the MF classes depicted in  can serve as a fuzzy number, depending 
on the situation. 

Figure 2

Figure 8:  Flat Fuzzy Number 
 
This shape of a fuzzy number is referred to as trapezoidal or “flat” and its MF often is 
denoted as  (a1,a2,a3,a4) or (a1/a2, a3/a4); when a2 is equal to a3, we get the triangular fuzzy 
number.  A fuzzy number is positive if a1 ≥ 0 and negative if a4 ≤ 0, and, as indicated, it 
usually is taken to be a convex fuzzy subset of the real line. 
 
3.1 Fuzzy Arithmetic 
 
As one would anticipate, fuzzy arithmetic can be applied to the fuzzy numbers.  Using the 
extension principle (Zadeh, 1975), the nonfuzzy arithmetic operations can be extended to 
incorporate fuzzy sets and fuzzy numbers10.  Briefly, if * is a binary operation such as 
addition (+), min (∧), or max (∨ ), the fuzzy number z, defined by z = x * y, is given as a 
fuzzy set by 
 µz (w) = ∨u,v  µx (u)  ∧  µy (v),   u,v,w ∈ ℜ, (1) 
 
subject to the constraint that w = u * v, where µx , µy, and µz denote the membership 
functions of x, y, and z, respectively, and ∨u,v denotes the supremum over u,v.11   
 
A simple application of the extension principle is the sum of the fuzzy numbers A and B, 
denoted by A ¿ B = C, which has the membership function: 
 
 µC(z) = max {min [µA(x), µB(y)]: x+y=z} (2) 
 

                                                 
10Fuzzy arithmetic is related to interval arithmetic or categorical calculus, where the operations use intervals, 
consisting of the range of numbers bounded by the interval endpoints, as the basic data objects.  The primary 
difference between the two is that interval arithmetic involves crisp (rather than overlapping) boundaries at the 
extremes of each interval and it provides no intrinsic measure (like membership functions) of the degree to which a 
value belongs to a given interval.  Babad and Berliner (1995) discussed the use interval arithmetic in an insurance 
context. 
11See Zimmermann (1996), Chapter 5, for a discussion of the extension principle. 
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The general nature of the fuzzy arithmetic operations is depicted in Figure 9 for A = (-1,1,3) 

 

9

 

and B = (1,3,5) 12.    

Figure 9:  Fuzzy Arithmetic Operations 
The first row shows the two eir sum; the second row 

.2 Applications 

his subsection presents an overview of insurance applications involving fuzzy arithmetic.  

 of 

 

uckley (1987) appears to have been the first author to address the fuzzy time-value-of-
ues 

bers 

Figure 10:  MF and Inverse MF 
 
                                                

membership functions A and B and th
shows their difference and their ratio; and the third row shows their product. 
 
3
 
T
The topics addressed include:  the fuzzy future and present values of fuzzy cash amounts, 
using fuzzy interest rates, and both crisp and fuzzy periods; the computation of the fuzzy 
premium for a pure endowment policy; fuzzy interest rate whose fuzziness was a function
duration; net single premium for a term insurance; the effective tax rate and after-tax rate of 
return on the asset and liability portfolio of a property-liability insurance company; cash-flow
matching when the occurrence dates are uncertain; and the financial pricing of property-
liability insurance contracts. 
 
B
money aspects of actuarial pricing, when he investigated the fuzzy future and present val
of fuzzy cash amounts, using fuzzy interest rates, and both crisp and fuzzy periods.  His 
approach, generally speaking, was based on the premise that "the arithmetic of fuzzy num
is easily handled when x is a function of y." [Buckley (1987: 258)]  For a flat fuzzy number 
and straight line segments for µA(x) on [a1, a2] and [a3, a4], this can be conceptualized as 
shown in Figure 10 

12This figure is similar to Musilek and Gupta (2000) Ch. 7, Fig. 18, p. 157, after correcting for an apparent 
discrepancy in their multiplication and division representations. 

 



where )a(ayaA)|(yf 1211 −+= and )a(ayaA)|(yf 3442 −−=

associa  mem akes the form 
 

 )s),S|(y/fs,)/sS|(yf,(s)S|(xµ n4nn2n3n2nn1n1n =

.  The points aj, j=1, 2, 3, 4, and 
the functions fj(y|A), j=1,2, "A" a fuzzy number, which are inverse functions mapping the 
membership function onto the real line, characterize the fuzzy number. 
 
If the investment is A and the interest rate per period is i, where both values are fuzzy 
numbers, he showed that the accumulated value (Sn), a fuzzy number, after n periods, a crisp 
number, is 
 ( ) ni1AS ⊕⊗=

j nj
 

n

number an

 (3) 
ecause, for positive fuzzy numbers, multiplication distributes over addition and is 

tive.  It follows that the bership function for Sn t

(4) 
 

here, for j=1,2, 
(5) 

epresented in a manner similar to Figure 10, except that a  is replaced with S . 

tend the 

 
Buckley then went on to  a
In the case of positive discounted values, he showed (Buckley 1987 pp. 263-4) that: 
 

If S > 0, then e

b

w
 
 

and can be r

n
jjnnj i))|(yf(1A)|(yf)S|(yf +⋅=

Then, using the extension principle [Dubois and Prade (1980)], he showed how to ex
analysis to include a fuzzy duration. 

nd fuzzy annuities.   extend the literature to fuzzy discounted values

: n) S,(PV2 exists; otherwise it may not, wher
An) S,(PV2 = iff A is a fuzzy d i1SA ⊕⊗= . ( ) n-

nd the present value of fuzzy annuities were discussed.13 

(6) 

3. 

, j = 1,2.  (7) 
 
Both the accumulated value a

y 
arithmetic.  Figure 11 is an adaptation of 

is representation of the computation. 

                                                

 
The essence of his argument was that this function does not exist when using it leads to 
contradictions such as a2 < a1 or a4 < a
 
 The inverse membership function of n) S,(PV2 is: 
 

-n
j-3jj i))|(yf(1)|(yf)|(yf +⋅= SA 

 
Lemaire (1990), using Buckley (1987) as a model, discussed the computation of the fuzz
premium for a pure endowment policy using fuzzy 
h
 

 
13 While not pursued here, the use of fuzzy arithmetic in more general finance applications can be found in Calzi 
(1990) and Simonelli (2001).  
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As indicated, the top left figur ears at 

e fuzzy effective interest rate per annum of (.03, .05, .07, .09), while the top right figure 
represents the MF of 10 for the present value 

f the pure endowment. 

t, 

ate of 6 percent, a 10-year Treasury Note yield of 8 percent, and a 
nearly increasing fuzzy rate between the two.  Figure 12 shows a conceptualization of his 

 

 
Then he investigated the m ium for a term 

surance, where the progressive fuzzification of rates plays a major role. 
Along the same lines, Terceno et bership functions associated 

ith the net single premium of some basic life insurance products assuming a crisp morality 
est 

erred annuities, and 
used the extension principle to develop the associated membership functions. 
 

Figure 11:  Fuzzy Present Value of a Pure Endowment 

e represents the MF of the discounted value after ten y
th

p55.  The figure on the bottom represents the MF 
o
 
Ostaszewski (1993: 29-38) extended the pure endowment analysis of Lemaire (1990).  Firs
he incorporated a fuzzy interest rate whose fuzziness was a function of duration.  This 
involved a current crisp r
li
idea. 
 

Figure 12:  Fuzzy Interest Rate 

ore challenging situation of a net single prem
in

. al. (1996) explored the mem
w
rate and a fuzzy interest rate.  Their focus was on α-cuts, and, starting with a fuzzy inter
rate, they gave fuzzy numbers for such products as term insurance and def
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Derrig and Ostaszewski (1995b, 1997) illustrated how FL can be used to estimate the 
effective tax rate and after-tax rate of return on the asset and liability portfolio of a property-
liability insurance company.  They began with the observation that the effective tax rate and
the risk-free rate fully determine the present value of the expected investment tax liability.  
This leads to differential tax treatment for stocks and bonds, which, together w

 

ith the tax 
ield of underwriting losses, determine the overall effective tax rate for the firm.  They then 

 

 

rate becomes the fuzzy num ilar result occurs when 
both the assets and liab at, while the outcomes 
generally follow intuit aphic display, of the 

ncertainty involved. 

 to 
ary contribution of their study was the investigation of the matching of 

ash flows whose occurrence dates are uncertain. 

s 

nonprobabilistic types of uncertainty in 
eir model.  The authors focused primarily on the FL aspects needed to solve the insurance-

ject 

                                                

sh
argued that the estimation of the effective tax rate is an important tool of asset-liability
management and that FL is the appropriate technology for this estimation. 
 
The essence of their paper is illustrated in Figure 1314, which shows the membership 
functions for the fuzzy investment tax rates of a beta one company15, with assumed 
investments, liabilities and underwriting profit, before and after the effect of the liability tax 
shield. 
 

Figure 13:  Fuzzy Investment Tax Rate 

As suggested by the figure, in the assets-only case, the non-fuzzy tax rate is 32.4 percent, but 
when the expected returns of stocks, bonds, dividends and capital gains are fuzzified, the tax 

ber (31%, 32.4%, 32.4%, 33.6%).  A sim
ilities are considered.  The authors conclude th

ion, the benefit is the quantification, and gr
u
 
Bouet and Dalaud (1996) investigate the use of Zadeh's extension principle for transforming 
crisp financial concepts into fuzzy ones and the application of the methodology to cash-flow 
matching.  They observer that the extension principle allows them to rigorously define the 
fuzzy equivalent of financial and economical concepts such as duration and utility, and
interpret them.  A prim
c
 
the final study of this section is Cummins and Derrig (1997), who used FL to address the 
financial pricing of property-liability insurance contracts.  Observing that much of the 
information about cash flows, future economic conditions, risk premiums, and other factor
affecting the pricing decision is subjective and thus difficult to quantify using conventional 
methods, they incorporated both probabilistic and 
th
pricing problem, and in the process "fuzzified" a well-known insurance financial pricing 
model, provided numerical examples of fuzzy pricing, and proposed fuzzy rules for pro

 
14 Adapted from Derrig and Ostaszewski (1997b), Figure 1. 
15 A beta one company has completely diversified stock holding, and thus has the same amount of risk (β = 1) as 
the entire market. 
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decision-making.  Their methodology was based on Buckley's inverse membership function 
[See Figure 10 and related discussion]. 
 
Figure 14 shows their conceptualization of a fuzzy loss, the fuzzy present value of that los
and the fuzzy premium, net of fuzzy taxes, using a one-period model.16 
 

Figur

s, 

e 14: Fuzzy Premium 

They concluded that FL can lead to signifi
conventional approach. 
 
4 
 

FISs are 
le based systems, fuzzy expert systems (FES), fuzzy models, fuzzy 
AM), or fuzzy logic controllers when used as controllers  (Jang et al. 

all these terms are synonymous.  Berkan and 
t a FIS based on IF-THEN rules is practically 

n expert system if the rules are developed from expert knowledge, but if the rules are based 

 

rocess.  
In the processing stage, nu   These 

variables, which become th This fuzzy input is 
ansformed by the rules of the inference engine to fuzzy output.  These linguistic results are 

                                                

cantly different pricing decisions than the 

Fuzzy Inference Systems 
The fuzzy inference system (FIS) is a popular methodology for implementing FL.  
also known as fuzzy ru
ssociative memories (Fa

1997 p. 73), although not everyone agrees that 
Trubatch (1997 p. 77), for example, observe tha
a
on common sense reasoning then the term expert system does not apply.  The essence of a 
FIS can be represented as shown in Figure 15.17  
 

Figure 15:  Fuzzy Inference System (FIS) 

As indicated in the figure, the FIS can be envisioned as involving a knowledge base and a 
processing stage.  The knowledge base provides MFs and fuzzy rules needed for the p

merical crisp variables are the input of the system.18

variables are passed through a fuzzification stage where they are transformed to linguistic 
e fuzzy input for the inference engine.   

tr
 

16 Adapted from Cummins and Derrig (1997), Figure 5. 
17 Adapted from Peña-Reyes and Sipper (1999), Figure 2. 

sed to normalize the crisp inputs and outputs.  Also, the 
he input does not have to be fuzzified. 

18 In practice, input and output scaling factors are often u
numerical input can be crisp or fuzzy.  In this latter event, t
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then changed by a defuzzification stage into numerical values that become the output of the
system. 
 
The operations t-norms (triangular-norms) and t-conorms (its dual) are used in FISs to 
combine the incoming signals and weights and to aggregate their products.  The simple
examples of the t-norm and the t-conorm are the min-operator and max-operator, 
respectively.  Frees and Valdez (1998) show that many copulas can serve as t-norms. 
 

 

st 

he Mamdani FIS, a representation of which is shown in Figure 16, has been the most 

 
In this case, there are two crisp inputs, x bership functions, Aj, 
Bj and Cj , where the conjunction 
"and" is interpreted to m  of the fuzzy inputs in the 
first two column
on the inference results (shown by rd column).  Taking the union of 

e shaded areas of the first two rows of column three results in the fuzzy set show in the 

j is 
hat is, wj = µ(xj) / Σj µ(xj ). 

as 

ing risks, 
cluding occupational injury risk; pricing group health insurance using fuzzy ancillary data; 

sation insurance rates; financial forecasting; and budgeting for 
ational health care. 

 
As mentioned above, the first recognition that fuzzy systems could be applied to the problem 
o

T
commonly mentioned FIS in the insurance literature.  

Figure 16:  Mamdani FIS 

0 and y0, and two sets of mem
, j=1,2, each set of which represent the rule Aj and Bj ⇒ Cj

ean the fuzzy intersection.  The minimum
s gives the levels of the firing (shown by the dashed lines) and their impact 

 the shaded areas in the thi
th
third row, which represents the overall conclusion. 
 
Defuzzification converts the fuzzy overall conclusion into a numerical value that is a best 
estimate in some sense.  A common tactic in insurance articles is to use the center of gravity 
(COG) approach, which defines the numerical value of the output to be the abscissa of the 
center of gravity of the union.  In practice, this is computed as Σj wj xj, where the weight w
the relative value of the membership function at xj, t
 
4.1 Applications 
 
This subsection presents an overview of insurance applications of FISs.  In most instances, 
indicated, an FES was used.  The application areas include:  life and health underwriting; 
classification; modeling the selection process in group health insurance; evaluat
in
adjusting workers compen
n

f individual insurance underwriting was due to DeWit (1982).  He recognized that 
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underwriting was subjective and used a basic form of the FES to analyze the underwriting 
practice of a life insurance company. 
 
Using what is now a common approach, he had underwriters evaluate 30 hypothetical life 
insurance applications and rank them on the basis of various attributes.  He then used this 
information to create the five membership functions:  technical aspects (µt), health (µh), 

rofession (µp), commercial (µc), and other (µo).  Table 1 shows DeWit’s conceptualization 

Fuzzy value 

p
of the fuzzy set “technical aspects.” 
 

Table 1:  Technical Aspects 
Description Example 
good remunerative, good policy 1.0 
moderate unattractive policy provisions 0.5 
bad sum insured does not match wealth of insured 0.2 
impossible child inappropriately insured for large amount 0.0 

 
Next, by way of example, he combined these membership functions and an array of fuzzy set 

perations into a fuzzy expert underwriting system, using the formula: 
 

 (8) 
 

where intensification embership for membership functions 
a alue (of n (  reduces

rade of me

o

 ( )I(µ ) increases the grade of mt

bove some v ten 0.5) and decreases it otherwise, concentratio  the 

( ophtI(µW = ( )) )]5.0µ,0max(1[
c

2 cµ,5.0min2µµµ) −−

2
oµ )

mbership, and dilation ( pµ

include the bounded difference, Hamacher and Yager operators; and he showed how α-cuts 
could be implemented to refine the decision rule for the minimum operator, where the α-cuts 
is applied to each membership function, and the algebraic product, where the minimum 
acceptable product is equal to the α-cut.  Whereas DeWit (1982) focused on technical an
behavioral features, Lemaire focused on the preferred policyholder underwriting

g ) increases the grade of membership.  He then 

Lemaire (1990) used a FES to provide a flexible definition of a preferred policyholder in life 
insurance.  As a part of this effort, h  
ways: he used continuous membership functions; he extended the definition of intersection to 

d 
 features of 

holesterol, blood pressure, weight and smoker status, and their intersection. 

is 

fuzzy inference system.  Measures of fuzziness were compared and discussed within the 

                                                

suggested hypothetical underwriting decision rules related to the values of W.19 
 

literature in three e extended the insurance underwriting

c
 
An early classification study was Ebanks et. al. (1992), which discussed how measures of 
fuzziness can be used to classify life insurance risks.  They envisioned a two-stage process.  
In the first stage, a risk was assigned a vector, whose cell values represented the degree to 
which the risk satisfies the preferred risk requirement associated with that cell.  In the second 
stage, the overall degree of membership in the preferred risk category was computed. Th
could be done using the fuzzy intersection operator of Lemaire (1990) [see Figure 5] or a 

 
19 The hypothetical decision rules took the form: 

0.0 ≤ W < 0.1 refuse 
0.1 ≤ W < 0.3 try to improve the condition, if not possible: refuse 
0.3 ≤ W < 0.7 try to improve the condition, if not possible: accept 
0.7 ≤ W < 1.0 accept 
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context of risk classification, both with respect to a fuzzy preferred risk whose fuzziness is 
minimized and the evaluation of a fuzzy set of preferred risks. 
 
Following Lemaire’s (1990) lead, Hosler (1992) and Young [(nee Hosler) (1993)] used FE
to model the selection process in group health insurance.  First single-plan underwriting was 
considered and then the study was extended to multiple-option plans.  In the single-plan 
situation, Young focused on such fuzzy input features as change in the age/sex factor in the 
previous two years, change in the group size, proportion of employees selecting group 
coverage, proportion of premium for the employee and the dependent paid by the employe
claims as a proportion of total expected claims, the loss ratio, adjusted for employer size, 
turnover rate.  She completed the section with a discussion of a matrix of the interaction 
between the features (criteria) and their interpretation in the context of

S 

r, 
and 

 fuzzy intersection 
perators. 

ch 

us, 

 
with a rule-based expert system in order to provide an improved decision aid for 

valuating life insurance risks.  Their system used two types of inputs:  the base inputs age, 

ods.  
 example, they investigated risk as a function of age, other characteristics held 

onstant, and replaced a risk function that had jumps at ages 30, 60 and 90, with a FL 

urance 

any. 

 
ital expenditures), 

lidity rating, potential for growth, and whether the municipality was in a crisis situation.  
e 
the 

ritten, 
 function. 

o
 
In the multiple-option case, the additional fuzzy features include single and family age 
factors, desired participation in each plan, age/sex factors, the difference in the cost of ea
plan, and the relative richness of each plan.  The age factors depended on the possibility of 
participation, given access cost, the richness of the benefits, employee cost, marital stat
and age.  The underwriting decision in this case included the single-plan decision as a 
criterion. 
 
Carreno and Jani (1993) developed a knowledge based system (KBS) that combines fuzzy
processing 
e
weight and height; and incremental inputs, which deal with particular habits and 
characteristics of prospective clients.  The output of their system was a risk factor used to 
develop the premium surcharge. 
One of the advantages that Carreno and Jani identify is the ability of FL to smooth out 
functions that have jump discontinuities and are broadly defined under traditional meth
By way of
c
function where the risk increased smoothly along the entire support. 
 
Another expert opinion-based study was Hellman (1995), which used a FES to identify 
Finnish municipalities that were of average size and well managed, but whose ins
coverage was inadequate.  The study was prompted by a request from the marketing 
department of his insurance comp
 
The steps taken included: identify and classify the economic and insurance factors, have an 
expert subjectively evaluate each factor, preprocessing the conclusions of the expert, and 
incorporate this knowledge base into an expert system.  The economic factors included
population size, gross margin rating (based on funds available for cap
so
The insurance factors were non-life insurance premium written with the company and th
claims ratio for three years.  Figure 17 shows an example of how Hellman pre-processed 
expert's opinion regarding his amount of interest in the non-life insurance premiums w
to construct the associated membership
 

 16



 

 
In this instance, two modif terest function 
of the expert was replaced ; and second, a 
minimum of 20 percent was im
because the municipality inations of the 
interest membership fu

Hellman concluded that the d that they were easily 
odified, the smooth functions give continuity to the values, and adding new fuzzy features 

velop 
f occupational injury 

f the forearm and hand.  The first phase of the research focused on the development and 

ed in 
 base was constructed with all of the potential 

ombinations for the given factors. 

se 
 

as 

 be used to make pricing decisions in group health 
surance that consistently consider supplementary data, including vague or linguistic 

fuzzy sets corresponding to the hypotheses, and determines the output values for the 
                                                

Figure 17:  Preprocessing Expert Opinion 

ications were imposed: first, the piece-wise linear in
 with a smooth interest function (equation)

posed on the function, in recognition of the advantage gained 
 was already a customer.  Finally, convex comb

nctions became the knowledge base of the FES. 
 

important features of the FESs include
m
is easy.  Other applications she envisioned included customer evaluation and ratings for 
bonus-malus tariff premium decisions. 
 
McCauley-Bell and Badiru (1996a, 1996b) discussed a two-phase research project to de
a fuzzy-linguistic expert system for quantifying and predicting the risk o
o
representation of linguistic variables to qualify risk levels.  These variables were then 
quantified using FST.  The second phase used analytic hierarchy processing20 (AHP) to 
assign relative weights to the identified risk factors.  Using the linguistic variables obtain
the first part of the research, a fuzzy rule
c
 
The study was particularly interesting because, unlike studies such as Derrig and Ostaszewski 
(1994 and 1995a), which rely on unprocessed expert opinion, McCauley-Bell and Badiru u
processed expert opinion.  The essential difference is that they use concept mapping to
capture a detailed representation of the expert's knowledge relative to the problem space 
well as an understanding of the relationships between concepts. 
 
Young (1996) described how FL can
in
objectives of the insurer, which are ancillary to statistical experience data.  She 
conceptualized the building of a fuzzy inference rate-making model as involving: a 
prescriptive phase based on expert opinion, which verbalizes the linguistic rules, creates the 
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20 Analytic hierarchy processing (AHP) analysis [Saaty (1980)] is a multicriteria decision making technique that 
uses pairwise comparisons to estimate the relative importance of each risk factors. 



conclusions; and a descriptive phase based on past actions of the company, which involves 
fine-tuning the fuzzy rules, if applicable.  By way of a benchmark, she compared the resulting 

zzy models with linear regressions to judge their performance. 

ive 
t insurance 

le 2. 

fu
 
Using group health insurance data from an insurance company, an illustrative competit
rate-changing model was built that employed only linguistic constraints to adjus
rates.  The essence of the type of fuzzy rules considered by Young is depicted in Tab
 

Table 2:  Fuzzy Rate Change Rules 
  Amount of Business 
  Small Mod Large 

Small - NA Underwriting NA 
Mod NA 0 NA Ratio (%) Large NA NA + 

"NA" implies not applicable for this illustration. 
 
Thus, for example, if the amount of business was small and the underwriting ratio was small 
(profit was large), the rates wer reased if the amount of 
business was large and the underwriting ratio was la .  A useful 
conceptua ation of the intersection of these based on in operator, was provided 
by Young  simplified re esentation of which is shown in Figure 18. 
 

 
In this example, the contours %], which are 
based on the space of the am ium volume, [$40M, 

0%, 100%].  The rate changes associated 
with underwriting ratios and am its are bounded by 
the rate changes at these lim
 
Young did not necessarily advocate u ering experience 
studies but presented the simp learly how to represent 

nguistic rules. 

ter 
 

iptive phases with a focus on targeted adjustments to filed 
tes and rate departures.  In this case, the fuzzy models were fine-tuned by minimizing a 

e reduced, while the rate was inc
rge (profit was small)

liz  rules,  the m
using contour curves, a pr

Figure 18:  Contours of Rate Change 

are of rate changes, whose space is [-5%, 10
ount of business, as measured by prem

$50M], and the space of the underwriting ratio, [8
ount of business values outside these lim

its.   

sing such a model without consid
lified model to demonstrate more c

li
 
Young (1996) was extended to include claim experience data in Young (1997).  In this la
article, Young described step-by-step how an actuary/decision maker could use FL to adjust
workers compensation insurance rates.   Expanding on her previous article, she walked 
through the prescriptive and descr
ra
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weighted sum of squared errors, where the weights reflected the relative amount of busin
in each state.  Young concludes that even though a given FL model may fit only slightly 
better than a stan

ess 

dard linear regression model, the main advantage of FL is that an actuary 
an begin with verbal rules and create a mathematical model that follows those rules. 

 
n 

 

ere, 

 a step-by-step fashion, the authors show how expert knowledge about underwriting 

 
 

 

iven the success of the application, the authors concluded that techniques of fuzzy 

does not 
.  They concluded that their methodology showed promise. 

sed the 
th care budget using 

oth global and detailed data.  Their model involved four steps:  preprocessing the data, 

 

dge 

                                              

c
 
A practical application was reported by Horgby et. al. (1997), who applied a FES to the issue
of diabetes mellitus in the medical underwriting of life insurance applicants.  This was a
interesting application because it involved a complex system of mutually interacting factors 
where neither the prognosticating factors themselves nor their impact on the mortality risk
was clear cut.  Moreover, it was good example of medical situations where it was easy to 
reach a consensus among physicians that a disease or a symptom is mild, moderate, or sev
but where a method of quantifying that assessment normally is not available. 
 
In
diabetes mellitus in life insurance can be processed.  Briefly, focusing on the therapy factor, 
there were three inputs to the system: the blood sugar level, which was represented as very
low, low, normal, high, and very high; the blood sugar level over a period of around 90 days,
with the same categories; and the insulin injections per week, which had the categories low,
medium, high, and very high.  The center of gravity (COG) method was used for 
defussification. 
 
G
underwriting will become standard tools for underwriters in the future. 
 
Romahi and Shen (2000) developed an evolving rule based expert system for financial 
forecasting.  Their approach was to merge FL and rule induction so as to develop a system 
with generalization capability and high comprehensibility.  In this way the changing market 
dynamics are continuously taken into account as time progresses and the rulebase 
become outdated
 
The final review of this section is of a study by Mosmans et. al. (2002), which discus
development of methodological tools for investigating the Belgium heal
b
segregating the health care channels, validating the channels and data analysis, and 
calculating the assignment of various categories of the insured to these channels using a 
multicriteria sorting procedure that was based on t-norms weighted through fuzzy implication
operators.  The authors concluded that their fuzzy multicriteria sorting procedure could be 
applied in a more general context and could open new application fields. 
 
5 Fuzzy c-Means Algorithm 
 
The foregoing fuzzy system allows us to convert and embed empirical qualitative knowle
into reasoning systems capable of performing approximate pattern matching and 
interpolation.  However, these systems cannot adapt or learn because they are unable to 
extract knowledge from existing data.  One approach for overcoming this limitation is to use 
a fuzzy clustering method such as the fuzzy c-means algorithm (Bezdek 1981). 21  The 

   
e c- red to by a number of studies mentioned in this 
w.  et. al. (2001), for example, found that the c-means 

ustering model produced inferior results. 

21 Th means algorithm is discussed here because it is refer
revie  However, not all authors advocate the method.  Yeo
cl
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essence of the c-means algorithm is that it produces reasonable centers for clusters of data, in 
the sense that the centers capture the essential feature of the cluster, and then grou
vectors around cluster centers that are reasonably close to them. 
 
A flowchart of the c-means algorithm is depicted in Figure 19: 

ps data 

 

 
As indicated, icates the number of 
patterns and p denotes the num egregate these n 

atterns into c, 2≤ c ≤ n - 1, clusters, where the within clusters variances are minimized and 
the between clusters varian rithm is initialized by 

setting the counter, t, to zero, and choosing: c, the number of clusters; m, the exponential 

al 

 

ep is to 

Figure 19: Flowchart of c-Means Algorithm 

 the database consists of the n x p matrix, xnp, where n ind
ber of features.  The algorithm seeks to s

p
ces are maximized.  To this end, the algo

re
weight, which acts to reduce the influence of noise in the data because it limits the influence 
of small values of membership functions; G, a symmetric, positive-definite (all its princip
minors have strictly positive determinants), p x p shaping matrix, which represents the 
relative importance of the elements of the data set and the correlation between them, 
examples of which are the identity and covariance matrixes; ε, the tolerance, which controls
the stopping rule; and α, the membership tolerance, which defines the relevant portion of the 
membership functions. 
 
Given the database and the initialized values, the counter, t, is set to zero.  The next st
choose the initial partition (membership matrix), )0(~U , which may be based on a best guess o
experience.  Next, the fuzzy cluster centers are computed, which, in effect, are elements that 
capture the essential fea

r 

ture of the cluster.  Using these fuzzy cluster centers, a new (updated) 
partition, )1(~ +tU , is calculated.  The partitions are compared using the matrix norm 

G

tt UU )()1( ~~ −+ and if the difference exceeds ε, the counter, t, is increased and the process 

continues.  If the difference does not exceed ε, the process stops.  As part of this final step, α-
cuts are applied to clarify the results and make interpretation easier, that is, all membership 
function values less than α are set to zero and the function is renormalized. 

 
This subsection presents an overview of insurance applications of the c-means algorithm.  
The application areas include:  an alternate tool for estimating credibility; ris

 
5.1 Applications 

k classification 
 both life and non-life insurance; and age groupings in general insurance. 

 
O

ij

in

staszewski and Karwowski (1992) explored the use of fuzzy clustering methods as an 
alternate tool for estimating credibility.  Given {x , i=1,…, n, j=1,…, p}, a data set 
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repre nting historical losse s experience, and y = {yj, j=1,…, p}, a data set representing the 
cent experience (risk characteristics and loss features), the essential idea is that one can use 

 µ 
re
a clustering algorithm to assign the recent experience to fuzzy clusters in the data.  Thus, if
is the maximum membership degree of y in a cluster, Z = 1 - µ could be used as the 
credibility measure of the experience provided by y, while µ gives the membership degree for 

e historical experience indicated by the cluster. 

graphical 
his 

or the 

staszewski (1993: Chapter 6) observed that lack of actuarially fair classification is 

 
n 

y way of introducing the topic to actuaries, he discussed an insightful example involving the 

ers 

1994 and 1995a) extended the work of Ostaszewski (1993, Chapter 
by showing how the c-means clustering algorithm could provide an alternative way to 

etts 

he auto rating territories portion of the study involved 350 towns and the 10 Boston rated 

g 

igure 20  shows a representation of the impact of the clustering algorithm when applied to 

                                                

th
 
As an example they consider an insurer with historical experience in three large geo
areas extending its business to a fourth large area.  The insurer can cluster new data from t
fourth area into patterns from the other areas, and thereby derive a credibility rating for its 
loss experience in the new market.  Using the c-means algorithm, the means and standard 
deviations as features, and two partitions (c=2), they arrived at the credibility factor f
data of the fourth area. 
 
O
economically equivalent to price discrimination in favor of high risk individuals and 
suggested “... a possible precaution against [discrimination] is to create classification methods 
with no assumptions, but rather methods which discover patterns used in classification.”  To
his end, he was among the first to suggest the use of the c-means algorithm for classificatio
in an insurance context. 
   
B
classification of four prospective insureds, two males and two females, into two clusters, 
based on the features height, gender, weight, and resting pulse.22  The two initial clust
were on the basis of gender.  In a step-by-step fashion through three iterations, Ostaszewski 
developed  a more efficient classification based on all the features. 
 
Derrig and Ostaszewski (
6) 
view risk and claims classification.  Their focus was on applying fuzzy clustering to the two 
problems of grouping towns into auto rating territories and the classification of insurance 
claims according to their suspected level of fraud.  Both studies were based on Massachus
automobile insurance data. 
 
T
subdivisions, with the features bodily injury (BI) liability, personal injury protection (PIP), 
property damage liability (PDL), collision, comprehensive, and a sixth category comprisin
the five individual coverages combined.  The parameters of the c-means algorithm were five 
coverage partitions (c = 5), which was the number of categories in a previous territory 
assignment grouping, a scaling factor of 2 (m=2), a tolerance of 5 percent (ε=0.05), and an α-
cut of 20 percent. 

23F
the auto rating territories of a subset of 12 towns (x-axis) and five clusters (y-axis).  The 
subscripts "I" and "F" denote the initial and final clusters, respectively. 
 

 
22 Age also was a factor, but it was irrelevant to the analysis since the applicants were all the same age.  
Moreover, the other feature values were intentionally exaggerated for illustrative purposes. 
23 Adapted from Derrig and Ostaszewski (1995), Figures 1 and 2. 
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As indicated, emberships 
of the territories a eans algorithm, 
the optimum class ter (risk 

ass).  Similar re

Their second study wa d from experts.  
eginning with 387 claims and two independent coders, 62 claims that were deemed 

 
 (1-3), moderate (4-6), strong (7-

), and certain (10).24  In this instance, the three features were the adjuster suspicion value, 

of their 

 the 

y 

ts 
d 

 

t, 

le 3. 

Figure 20:  Town Clustering Using c-Means Algorithm 

 in the left figure, the initial groups are crisp in the sense that the m
re unique.  In contrast, as a consequence of applying the c-m
ification resulted in some towns belonging to more than one clus

sults were found for the entire database. cl
 

s based on an interesting use of information derive
B
fraudulent by either coder were identified.  Then, starting with 127 claims (the 62 deemed 
fraudulent plus 65 from remaining 325), experienced claim managers and experienced 
investigators were each asked to rank each claim on a scale of 0 to 10.  Their responses were
grouped into the five initial clusters (c=5):  none (0), slight
9
the investigator suspicion value, and a third category labeled the “fraud vote,” which was 
equal to the number of reviewers who designated the claim as fraudulent.  The results 
analysis supported the hypothesis that adjuster suspicion levels can serve well to screen 
suspicious claims.  The authors concluded that fuzzy clustering is a valuable addition to
methods of risk and claim classification, but they did not conclude that it was the best way. 
 
The last study of this section is by Verrall and Yakoubov (1999), who showed how the fuzz
c-means algorithm could be used to specify a data-based procedure for investigating age 
groupings in general insurance.  Their database included the total cost of claims associated 
with more than 50,000 motor policies.  Starting with the assumption that distortion effec
have already been removed and policyholder age was the only significant factor, they focuse
on the coverages of automobile material damage and bodily injury.   
 
The heuristic nature of their approach was interesting.  They pre-processed the data by 
grouping the low ages and high ages where data was sparse and categorized it by adjusted
frequency, computed as the product of the frequency at each age and the average severity.  
Then, using an ad hoc approach, they settled on six clusters (c=6) and an α-cut of 20 percen
from which the c-means algorithm results led them to the conclude that a first approximation 
f the appropriate age grouping were those shown in row three of Tabo

 

                                                 
24 This data has been used for a number of studies. 
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Table 3:  Policyholder Age Groupings 
 Age Groupings 
Group 1 2 3 4 5 6 7 
Risk Cluster 1 2 3 4 3 5 6 
Age - 25 26-27 28-31 32-47 48-51 52-68 69 - 
Relative Risk 406 00 72 61 136 115 90 1
 

Th e risk  of ea  the table), coupled with the requireme that 
seq ave si em rship, le em to conclude that group 5 was an anomaly, 
and groups 4 and 5 likely should be amalg . 
 
They concluded that, while other methods can be used, the flexibility of the fuzzy approach 

 the grouping of car engine sizes, and the 
lassification of excess mortality risk in life insurance according to blood pressure. 

tial 
 fuzzy goal, G, and a fuzzy constraint, 
 is a fuzzy set resulting from the 

tersection of G and C.   Assuming the goals and constraints enter into the expression for D 
s 

 

 
As indicated, the dec d constraint MFs, and 
the set of possible op  is the option with 

e highest degree of membership in the decision set, the crisp solution to this problem would 
be  

 its crisp counterpart, fuzzy LP might involve finding an x such that (Zimmermann 1996: 
89) 

  

e relativ ch group (the last row of nt 
uential ages h milar m be t th

amated

makes it most suitable for grouping policyholder age.  They noted also that the algorithm 
could be applied to other explanatory variables and in other types of insurance, such as the 
classification of vehicles into vehicle rating groups,
c
 
6 Fuzzy Linear Programming 
 
Many of the fuzzy logic studies in insurance involve decision making, and most of these 
tudies rely on the framework established by Bellman and Zadeh (1970).  The essens

notion is that, given a non-fuzzy space of options, X, a
C, then G and C combine to form a decision, D, which
in
in exactly the same way, a simple representation of the relationship between G, C and D i
given in Figure 21. 

Figure 21:  Decision Making 

ision involves the fuzzy intersection of the goal an
tions in the interval xL to xH.  If the optimal decision

th

 
(x)}]µ(x),{µminmax[arg*x CGx

= . 

 
In this section, we focus on the role of fuzzy linear programming (LP) in decision making.  

ikeL
2
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where C0 is the aspiration level for the objective function, "~" over a symbol denotes the 
fuzzy version of that symbol, and the coefficients aij, b and cij are not necessarily crisp 
numbers. 
 

his fuzzy LP problem can be resolved by reformulating it as a crisp LP problem.  The 

 

 
As indicated, zi is a fuzzy num i ≤ bi - λi, one for 
zi ≥ bi, and linearly incre λ as a tolerance interval.  

sing an α−cut to provide a minimum acceptable satisfaction level, that is, µ(zi) ≥ α is an 
acceptable constraint, we see f t constraint is zi ≥ bi - λi + λi 

.  Similarly, C ≤ C0 + λ - λ α. 

:  α  

 
0 ≤ α ≤ 1. 

6.1 Application
 
A number of the foregoing articles us d decision making, but, since they have already been 

viewed, they will not be revisited here.  Instead, we focus on three articles that explicitly 
po ming.  The topics addressed include optimal asset allocation, 
n unization theory and the matching of assets and liabilities. 

                                                

i, 

T
essence of one approach25 to doing this is depicted in Figure 22.   

Figure 22:  Equivalent Crisp Constraint 

ber, whose membership function is zero for z
asing in the interval.  Zimmermann refers to 

U
rom the diagram that an equivalen

α
 
Thus, given the values of λ, the equivalent crisp programming problem becomes one of 
maximizing α subject to the equivalent constraints, that is: 
 

Maximize
 

Subject to:   zi - λi α ≥ bi - λi ; 
C + λ α ≤ C0 + λ ; and

 
 

s 

e
re
incor rate linear program
insura ce pricing, and imm
 

 
25 Adapted from Brockett and Xia (1995), pp. 34-38. 
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Guo and Huang (1996) used a possibilistic linear programming method for optimal asset 
allocation based on simultaneously maximizing the portfolio return, minimizing the portfoli
risk and maximizing the possibility of reaching higher returns.  This was analogous to 
maximizing mean return, minimizing variance and maximizing skewness for a random

o 

 rate of 
turn. re

 
The authors conceptualize the possibility distribution )(π

ir~ of the imprecise rate of return of 

the i-th asset of the portfolio as shown in Figure 23(a), where )r,r,(rr~ o
i

m
i

p
ii =  and i

m
i

p
i r,r,r  

are the m

o

ost pessimistic value, the most possible value, and the most optimistic value for the 
te of return, respectively. 

Fig
 
Then, as depicted in Figu of these values, they defined 
the imprecise rate of retu

ra

ure 23:  Possibility Distribution of Portfolio Return 

re 23(b), taking the weighted averages 
rn for the entire portfolio as )r,r,(rr~ omp

 = , the por

 and the portfolio skewness as ).r-(r mo   The authors then

tfolio risk as 

 showed in a step-by-step 
shion how the portfolio could be optimized using Zimmermann's (1978) fuzzy 

eturn and risk
 
Carretero and Viejo (2000) investigated the use o

obile 

),r-(r pm

programming method.  They concluded that their algorithm provides maximal flexibility for 
decision makers to effectively balance the portfolio's r . 

f fuzzy mathematical programming for 
insurance pricing decisions with respect to a bonus-malus rating system26 in autom
insurance.  They used the max-min operator and followed Zimmermann's approach (1983, 
1985), which led to an optimal solution of the form: 

fa

 
 kixxinmx

iROxxD ,...,1}},)(µ,)(µ{{max*)(µ ==  

where µD , µO , and µR denote the membership function for the fuzzy set "decision D," the 
fuzzy objective function, and the fuzzy constraints, re

(9) 

spectively.  Their assumed objective 
as "attractive income from premiums" while the constraints involved the spread of policies 

mong the risk classes, the weighted sum of the absolute variation of the
nd the deviation from perfect elasticity of the policyholder's payments w

 
h 

 

                                                

w
a  insured's premium, 
a ith respect to their 
claim frequency.  The system was tested on a large database of third-party personal liability
claims of a Spanish insurer and they concluded that their fuzzy linear programming approac
avoids unrealistic modeling and may reduce information costs.  Carretero (2003) provides 
further commentary on the approach. 
 
Finally, Chang (2003) developed fuzzy mathematical analogues of the classical immunization
theory and the matching of assets and liabilities.  Essentially, he reformulated concepts about 

 
26 A bonus-malus rating system rewards claim-free policyholders by awarding them bonuses or discounts and 
penalizes policyholders responsible for accidents by assessing them maluses or premium surcharges. 
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immunization and the matching of assets and liabilities into fuzzy mathematics, and then 
expressed the objective in terms of a fuzzy linear programming problem.  He concluded that 
is approach offers the advantages of flexibility, improved conformity with situations 

e, it may have been sub-optimal, in 
en constrained by the limitations of FL, and opportunities 

 ha ntage of potential synergies afforded by other 
chnologies.  

e most 
passes the technologies of fuzzy logic, genetic algorithms28 (GAs), and neural 

etworks29 (NNs), and it has emerged as an effective tool for dealing with control, modeling, 

 
en 

cles that 
ave merged FL with either GAs or NNs.  The application areas considered are classification 

v mer involves four representative SC articles in insurance, two on the 
property-casualty side and two on the life-health side.  The latter involves market forecasting. 

damage in a car accident, the compensation rate depends on comparative negligence, which is 

                                                

h
encountered in practice and the extension of solutions. 
 
7 Soft Computing 
 
Most of the previously discussed studies focused on FL to the exclusion of other 
echnologies.   While their approach has been productivt

the sense that studies may have be
may ve been missed to take adva
te
 
This notion was embodied in the concept of soft computing (SC), which was introduced by 
Zadeh (1992).27  He envisioned SC as being “concerned with modes of computing in which 
precision is traded for tractability, robustness and ease of implementation.”  For th
part, SC encom
n
and decision problems in complex systems.30  In this context, FL is used to deal with 
imprecision and uncertainty, GAs are used for search and optimization, and NNs are used for
learning and curve fitting.  In spite of these dichotomies, there are natural synergies betwe
these technologies, the technical aspects of which are discussed in Shapiro (2002). 
 

7.1 Applications 
 
This section provides a brief overview of a few representative insurance-related arti
h
and in estments.  The for

 
Our first example of a SC approach is the study of Yoo et al (1994), which proposed it as an 
auto-insurance claim processing system for Korea.  In Korea, given personal and/or property 

 
27 There are a number of ways that hybrid models could be defined.  One approach would be to focus on all 
adaptive techniques, including such things as chaos theory and fractal analysis.  Another approach could be that 
taken by Yakoubov and Haberman (1998: 75-81), who defined hybrid models as fuzzy techniques in 
combination with other deterministic and statistical methods.  In this article we concentrate on the SC 
technologies.   
28 GAs are a methodology to perform a randomized global search in a solution space.  In this space, a population 
of candidate solutions, each with an associated fitness value, are evaluated by a fitness function on the basis of 
their performance.  Then, using genetic operations, the best candidates are used to evolve a new population that 
not only has more of the good solutions but better solutions as well.  A working knowledge of GAs can be 
obtained by reading Shapiro et. al. (1999) and Wendt (1995) for genetic algorithms.         
29 NN are computational structures with learning and generalization capabilities.  Conceptually, they employ a 
distributive technique to store knowledge acquired by learning with known samples.  Operationally, they use a 
training set of samples of input-output relationships and a learning algorithm to formulate a supervised  learning 
algorithm that performs local optimization.  A working knowledge of NNs can be obtained by reading Francis 
(2001) and Brockett et. al. (1998). 
30While FL, NNs, and GAs are only a subset of the soft computing technologies, they are regarded as the three 
principal components.  [Shukla (2000):  406] 
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assigned using responsibility rates.  The authors first describe the expert knowledge structure 
and the claims processing system.  They then explain in general terms how they determined 
the responsibility rate, and hence the compensation rate, using a fuzzy database, a rule-based 

   

ior 
 population was envisioned as a three-dimensional space 

omposed of organization type, geographic region, and organization size.  

ent, 
d 

mogorov-Smirnov 
S) test, skewness, and kurtosis.  

 as 
ulation 

nificantly at variance.  The time varying metric was the 
hange in the behavior population dynamics over time.  Given the prepared system and the 

 
 

  The Pittsburgh-style31 of GAs was used to generate the 
atabase and rulebase for the FISs, based on a data furnished by specialists, which contained 

 
ion performance to date for breast cancer 

iagnosis and, because their final systems involve just a few simple rules, high human-

ee 
tify the best-evolved rules.  With respect to the former, the features of the 

                                                

system, and a feed-forward NN learning mechanism, and the problems associated with 
implementing their system. 
 
Cox (1995) reported on a SC-based fraud and abuse detection system for managed healthcare. 
The essence of the system was that it detected “anomalous” behavior by comparing an 
individual medical provider to a peer group. The preparation of the system involved three 
steps:  identify the proper peer population, identify behavior patterns, and analyze behav
pattern properties.  The peer
c
 
The behavior patterns were developed using the experience of a fraud-detection departm
an unsupervised NN that learnt the relationships inherent in the claim data, and a supervise
approach that automatically generate a fuzzy model from a knowledge of the decision 
variables.  Finally, the behavior pattern properties were analyzed using the statistical 
measures mean, variance, standard deviation, mean absolute deviation, Kol
(K
 
The discovery properties of the fuzzy model were based on three static and one time varying 
criteria metrics.    The static metrics were the insurer's exposure to fraudulent behavior,
measured by total claim dollars, the degree of variance from the center of the peer pop
for each behavior pattern, which was referred to as the population compatibility number, and 
the number of behaviors that are sig
c
discovery properties, the distribution of data points for the behavior patterns of any individual
provider within this population could be computed and compared with all the providers of a
similar type, a similar organization size, and within the same geographic area.  Thus, the 
fuzzy system-based fraud and abuse detection system identifies a provider that has significant 
variance from the peer population. 
 
Cox concluded that the system was capable of detecting anomalous behaviors equal to or 
better than the best fraud-detection departments. 
 
Peña-Reyes and Sipper (1999) used GA-constructed FISs to automatically produce diagnostic 
systems for breast cancer diagnosis.
d
444 benign cases and 239 malignant cases, which had been evaluated based on 9 features. 
They claimed to have obtained the best classificat
d
interpretability. 

 
Bentley (2000) used an evolutionary-fuzzy approach to investigate suspicious home 
insurance claims, where genetic programming was employed to evolve FL rules that 
classified claims into “suspicious” and “non-suspicious” classes.  Notable features of his 
methodology were that it used clustering to develop membership functions and committ
decisions to iden

 
31 Every individual in the GA is encoded as a string with variable length. 
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claims were clustered into low, medium, and high groups, and the minimum and maximum 
he 
parallel 

onal 

reas 

dies 
one.32  The topic addressed 

 market forecasting. 

 

 stock data for the Nasdaq-100 main index as well as six of the 
ompanies listed therein.  They concluded that the forecasting and trend prediction results 

h as 
l 

based 
wan stock market to assess the proposed intelligent system, they conclude that a 

 based on both quantitative (technical indexes) and qualitative factors is superior to one 

.  
a, 

ithmetic, fuzzy inference systems, fuzzy clustering, fuzzy 
gression.  By the same token, FL has been applied in many 

ran assification, underwriting, projected liabilities, fuzzy future and 
resent values, pricing, asset allocation, cash flows, and investments.   

zed by qualitative 
onditions for which a mathematical model is needed that reflects those conditions.  The 

                                                

value in each cluster was used to define the domains of the membership functions.  T
committee decisions were based on different versions of the system that were run in 
on the same data set and weighted for intelligibility, which was defined as inversely proporti
to the number of rules, and accuracy.  Bentley reported that the results of his model when 
applied to actual data agreed with the results of previous analysis. 
 
By far, the greatest number of SC articles involving fuzzy systems in insurance-related a
is associated with investment models.  While most articles are directed at other financial 
intermediaries, a good deal of the SC research on investment models has implications in the 
insurance area.  The rest of this section provides a brief review of two of these recent stu
in order to give a flavor for the types of analysis that have been d
is
 
Abraham et. al. (2001) investigated hybridized SC techniques for automated stock market
forecasting and trend analysis.  They used principal component analysis to preprocess the 
input data, a NN for one-day-ahead stock forecasting and a neuro-fuzzy system for analyzing 
the trend of the predicted stock values.  To demonstrate the proposed technique, they 
analyzed 24 months of
c
using the proposed hybrid system were promising and warranted further research and 
analysis. 
   
Finally, Kuo et. al. (2001) developed a GA-based fuzzy NN (GFNN) to formulate the 
knowledge base of fuzzy inference rules, which can measure the qualitative effect (suc
the political effect) in the stock market.  The effect was further integrated with the technica
indexes through the NN.  Using buying-selling points and buying-selling performance 
on the Tai
NN
based only on quantitative factors. 
 
8 Conclusions 
 
The purpose of this article has been to provide an overview of insurance applications of FL
As we have seen, many of the FL techniques have been applied in the insurance are
ncluding fuzzy set theory, fuzzy ari

programming, and fuzzy re
insu ce areas including cl
p
 
The overviews verify that FL has been successfully implemented in insurance.  Given this 
success, and the fact that there are many more insurance problems that could be resolved 
using fuzzy systems, we are likely to see a number of new applications emerge.  There are at 
least two catalysts for this.  One is that the industry should now have a greater appreciation of 
potential areas of application, specifically those areas that are characteri
c
second is that, while fuzzy systems have made inroads into many facets of the business, in 
most instances the applications did not capitalized on the synergies between the SC 

 
32 See Shapiro (2003) for a review of capital market applications of SC. 
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technologies and, as a consequence, there are opportunities to extend the studies.  These 
things considered, FL applications in insurance and related areas should be a fruitful area for 
exploration for the foreseeable future.  
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